Indian Statistical Institute, Bangalore

B. Math. Third Year

Second Semester - Analysis IV

Mid-Semester Exam Duration: 3 hours

Date : March 02, 2015

Answer any five, each question carries 8 marks, total marks: 40

- 1. Let \mathcal{A} be a closed algebra of real continuous functions on a compact metric space X that separates points of X and nowhere vanishes on X.
 - (a) If $f, g \in \mathcal{A}$, prove that |f| and max $\{f, g\}$ are in \mathcal{A} (Marks: 3+1).

(b) For $f \in C_{\mathbb{R}}(X)$, $x \in X$ and $\epsilon > 0$, prove that there is a $g \in \mathcal{A}$ such that g(x) = f(x) and $g(y) > f(y) - \epsilon$ for all $y \in X$.

- 2. Let $\Phi: C[0,1] \to C[0,1]$ be given by $\Phi(f)(x) = \int_0^x f(t)dt$.
 - (a) Prove that Φ is continuous and $\Phi(B)$ is relatively compact for any bounded set $B \subset C[0, 1]$ (Marks: 5).

(b) Is Φ a contraction? Does Φ have a unique fixed point? Justify your answers.

3. Let X be a complete metric space and $\phi: X \to X$ be a map.

(a) If ϕ is a contraction, prove that ϕ has a unique fixed point $x \in X$ and $\lim_{n\to\infty} \phi^n(y) = x$ for all $y \in X$.

(b) Suppose there is a sequence (a_n) such that $\sum a_n < \infty$ and $d(\phi^n(x), \phi^n(y)) \le a_n d(x, y)$ for all $n \ge 1$ and all $x, y \in X$. Prove that ϕ has a unique fixed point $x \in X$ and $\lim_{n \to \infty} \phi^n(y) = x$ for all $y \in X$ (Marks: 4).

- 4. (a) Discuss Implicit Function Theorem for F at (2, -1, 2, 1) where F: ℝ²⁺² → ℝ² is given by F(x, y, u, v) = (x² y² u³ + v² + 4, 2xy + y² 2u² + 3v⁴ + 8).
 (b) Let X be a compact metric space and g be a continuous function on C. Prove that φ: C(X) → C(X) defined by φ(f) = g ⊙ f is continuous (Marks: 4).
- 5. (a) Let f be a continuously differentiable map of an open set E of Rⁿ into Rⁿ. If f'(x) is invertible for every x ∈ E, prove that f is an open map (Marks: 3).
 (b) Suppose f is a differentiable 2π-periodic function such that f' ∈ R[-π, π]. Assume f ~ ∑[∞]_{-∞} c_ne^{inx}. Prove that ∑ n²|c_n|² and ∑ |c_n| converge.
- 6. Let $f \in \mathcal{R}[-\pi,\pi]$ be a 2π -periodic function and $f \sim \sum_{-\infty}^{\infty} c_n e^{inx}$. (a) If for some $x \in [-\pi,\pi]$, there is a $\delta > 0$ and $M < \infty$ such that for all $t \in (-\delta,\delta), |f(x+t) - f(x)| \leq M|t|$, prove that $\lim_{N \to \infty} \sum_{-N}^{N} c_n e^{inx} = f(x)$. (b) Prove that $\lim_{N \to \infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(t) - \sum_{-N}^{N} c_n e^{int}|^2 dt = 0$ (Marks:4).
- 7. Let $f(x) = (\pi |x|)^2$ on $[-\pi, \pi]$. Prove that $f(x) = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$ for all x. Deduce that $\sum_{1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ and find $\sum \frac{1+2(-1)^n}{n^2}$.